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The coordinate transformation method is applied to bounded domains to design metamaterial devices for
steering spatially confined electromagnetic fields. Both waveguide and free-space beam applications are con-
sidered as these are analogous within the present approach. In particular, we describe devices that bend the
propagation direction and squeeze confined electromagnetic fields. Two approaches in nonmagnetic realization
of these structures are examined. The first is based on using a reduced set of material parameters, and the
second on finding nonmagnetic transformation media. It is shown that transverse-magnetic fields can be bent
or squeezed to an arbitrary extent and without reflection using only dielectric structures.
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I. INTRODUCTION

The coordinate transformation method �CTM� �Ref. 1�
employs the invariance of Maxwell equations under coordi-
nate transformations2 to establish an equivalence between
metric transformations and changes in material parameters.3,4

The materials with parameters chosen to mimic a desired
coordinate system are called the transformation media.1,5

CTM has been exploited for various computational prob-
lems such as design of perfectly matched layers �PMLs� for
simulations of open boundaries in finite-difference time-
domain and finite-element methods,6–9 simplifying the ge-
ometry of complex computational domains,10–13 representing
waveguide bends and twists by equivalent straight
segments,14,15 and formulating novel perturbation schemes
for anisotropic materials.16 In Ref. 1, Pendry et al. suggested
implementing transformation media as metamaterials and in-
spired the widespread use of CTM as an optical design tool.

Several distinct strategies for the CTM-based design of
metamaterial structures have been proposed. A continuous
transformation of the whole space gives devices that are in-
herently invisible �like invisibility cloaks,1 electromagnetic
field concentrators,17 rotators,18 and perfect lenses3,19�. Vari-
ous authors have previously applied CTM for design and
modeling waveguides.14,15,20–22 More recently, the embedded
coordinate transformation method has been described,23

where transformation media are embedded into surrounding
space, yielding devices that transfer the transformed fields
from the devices to their exterior.

In this paper, we apply CTM to domains bounded by
transformation-invariant boundary conditions �BCs�. Such an
approach is inspired by the fact that in practice electromag-
netic fields are always confined in space, like in waveguides
and electromagnetic cavities or like electromagnetic beams.
A reflectionless CTM-based device can have a twofold func-
tion: it can rearrange at will the field distribution within itself
and it can yield an orthogonally transformed �rotated� outgo-
ing wave. The beam squeezer is considered as a typical ex-
ample of the former and the waveguide bend as the typical
example of the latter.

The CTM-based design offers the possibility of realizing
a device with a given function �e.g., cloaking� in countless

ways, but it is a rule of thumb that the resulting prescription
for material parameters is very hard to implement. For opti-
cal applications, probably the biggest problem is to obtain a
material with a controlled permeability. Nonmagnetic CTM
devices can be designed, but only for TM waves. Therefore,
as our main goal for the considered structures �bend and
squeezer� we choose achieving a nonmagnetic realization. In
Sec. III we show that using a reduced set of material param-
eters instead of the originally magnetic transformation media
may be promising, provided the impedance-matching condi-
tion is reasonably satisfied. In Sec. IV we propose a different
approach by considering transformations that yield nonmag-
netic transformation media. By giving examples of a non-
magnetic waveguide bend and beam squeezer, we anticipate
that in principle a structure with arbitrary shape can be de-
signed as nonmagnetic, provided that its optical length is
unrestrained. The numerical simulations in the paper have
been done using the COMSOL Multiphysics FEM solver.

II. COORDINATE TRANSFORMATION METHOD AND
CONFINED DOMAINS

Figure 1 depicts a domain in �a� Cartesian coordinates
xi��D�� and �b� curvilinear coordinates xi�D� given by
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FIG. 1. �Color online� �a� The domain D� in Cartesian coordi-
nates xi�, and �b� its image, the domain D in curvilinear coordinates
xi. Blue lines stand for �D� and �D. Transformation media given by
Eq. �2� mimic the curvilinear coordinates xi. Red arrows show the
propagation directions of an electromagnetic wave, assuming ho-
mogeneous �i�j� and �i�j�.
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xi = xi�x1�,x2�,x3��, �i�
i =

�xi

�xi�
, �i

i� =
�xi�

�xi . �1�

Domain boundaries are denoted by �D� and �D with BCs
corresponding to either zero-field or perfect electric conduc-
tor �PEC�, both of which are invariant under coordinate
transformations. The electric permittivity and magnetic per-
meability of the medium within D� are labeled with �i�j� and
�i�j�, respectively.

The Maxwell equations are invariant under coordinate
transformations,2 whereas the material parameters in D
read4,17

�ij = �−1�i�
i

� j�
j

�i�j�, �ij = �−1�i�
i

� j�
j �i�j�, �2�

where � is the determinant of �i�
i and summation over re-

peated indices �running from 1 to 3� is assumed. The electric
and magnetic fields �one-forms� in D� are Ei� and Hi� so the
fields in D read

Ei = �i
i�Ei�, Hi = �i

i�Hi�. �3�

The above coordinate transformation can be physically
implemented by interpreting xi as Cartesian coordinates and
choosing the permittivity and permeability of the physical
media within D �the transformation media� to coincide with
�ij and �ij.4

Figure 2 explains how transformed fields outside transfor-
mation media are obtained. The domain D� is divided into
three subdomains, D1�, D2�, D3�, and transformed to D1, D2,
D3, respectively. Within D1� and D3� it is assumed that the
transformation satisfies

�i
i�� j

j��ij = �i�j�, � = 1, xi� � D1� � D3�. �4�

Equation �4� means that D1 and D3 have the same shape as
D1� and D3�, respectively. Subdomain D2� is transformed to D2
so that it continuously connects D1 and D3. Now Eqs. �2� and
�4� assert that �ij and �ij for xi�D1�D3 are same as the
corresponding �i�j� and �i�j� for xi��D1��D3� except that
they may be rotated �together with D1� and/or D3��. Since
continuous transformation �1� is established between entire
D� and D, the fields are transformed according to Eq. �3� in
D1 and D3 in spite of the fact that media remained un-

changed with respect to that in D1� and D3�. This way a recipe
is established for a reflectionless rotation of field distribution
and polarization or change in propagation direction of a con-
fined electromagnetic field that passes through a domain �D2�
with transformation media.

The method of transferring modified fields away from
transformation media described above is an alternative to the
one based on embedded coordinate transformations by Rahm
et al.23,24 The benefit here is that the absence of reflection
comes as a simple consequence of transformation continuity.

Another application of the concept of bounded domains is
in the design of structures with a desired external shape with-
out affecting the way fields perceive the internal geometry. A
typical example is in waveguide miniaturization20 or squeez-
ing an electromagnetic beam, which we describe in detail
below.

The performance of any CTM-based device is, in prin-
ciple, limited only by physical properties of the metamateri-
als implementing the transformation media. In the general
case, parameters required for transformation media are such
that causality implies the occurrence of both dispersion and
absorption over any finite frequency band. These limitations
have been reported for cloaking devices in Ref. 1. Moreover,
the fabrication is complicated since the metamaterial will
need to be both anisotropic and with spatially varying prop-
erties in general case, as can be seen from Eq. �2�. Still,
perhaps the biggest obstacle in optical applications is the
difficulty in engineering the magnetic response. For these
reasons, in CTM applications it is crucial to consider how the
material requirements can be released or simplified even if it
is sometimes achieved at the expense of departing from ide-
ally required values.

In Secs. III and IV we consider two characteristic devices,
the waveguide bend and beam squeezer, and discuss their
implementation with respect to the above mentioned prob-
lems. Our main aim is to remove magnetism completely and
that can be done for the TM polarized waves. In Sec. III this
is achieved by substituting the original �magnetic� transfor-
mation media parameters with a reduced nonmagnetic set
having the same dispersion relation. In Sec. IV we describe
transformations that yield a nonmagnetic transformation me-
dia.

III. DEVICE DESIGN AND IMPLEMENTATION WITH A
REDUCED SET OF MATERIAL PARAMETERS

A. Waveguide bend

The waveguide/beam bend shown in Fig. 3 has previously
been treated in Refs. 21, 22, and 24–26. The underlying
transformation is

x = y� sin��x��, y = y� cos��x�� . �5�

In this and all the following examples, we assume z=z� and
free-space background �i�j�=�0�i�j� and �i�j�=�0�i�j�. By
�ij =�ij we will label the relative permittivity and permeabil-
ity of the transformation media.

The rectangle A�B�C�D� is transformed to the annular
segment ABCD. L= �A�B�� is the optical length of the bend
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FIG. 2. �Color online� Explaining how transformed fields are
obtained outside transformation media. Dashed boundaries indicate
that only relevant parts are shown while domains may extend arbi-
trarily beyond them. For simplicity, the media are assumed to be
homogeneous in D�. �a� An electromagnetic wave �red arrow�
propagates along a straight line in D�. �b� The wave is transformed
by transformation media in D2 maintaining the orientation after
passing through.
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while R1= �OA� and R2= �OD� are its inner and outer radius. If
the bend angle is �, then �L=�. The relative permittivity is
diagonal in cylindrical coordinates �r ,� ,z� and reads

��	 = diag���r�−1,�r,��r�−1�, �,	 = r,�,z . �6�

From now on we are concerned only with TM waves �z
being the magnetic axis� for which only �rr, ���, and �zz

=�zz are relevant. Following the procedure used in Refs. 27
and 28 for the cloak, a reduced parameter set for the bend
from Fig. 3�b� is found as Refs. 25 and 26

�rr = ��r�−2, ��� = 1, �zz = 1. �7�

In both the ideal �Eq. �6�� and reduced set of parameters
�Eq. �7��, the free parameter � appears. Since parameters �6�
are impedance matched to vacuum irrespective of the value
of �, it affects only the phase shift in passing through the
bend. However, reduced parameters �7� are impedance
matched to vacuum only for �r=1 so the value of � deter-
mines the amount of reflection at the entrance AD and exit
BC of the bend. The value of � that minimizes reflection
depends on the incoming wave, but for a general case, it is
reasonable to set

� =
1

RC
, RC =

R1 + R2

2
, �8�

matching the impedance along the central line of the bend.
Now we see that in case of reduced parameters, the bend
geometry �R1 and R2� will play the deciding role in its per-
formance through impedance mismatch away from r=RC.

Figure 4 shows numerical simulations results for a 90°
waveguide bend. The second TM mode, TM2, with fre-
quency 2 GHz is excited at the left edge of structures. The
simulated domains have PEC boundaries and are terminated
by PMLs to simulate infinite waveguides. For reference,
Figs. 4�a1� and 4�a2� show the case where ideal parameters
�Eq. �6�� have been used. The lower part of Figs. 4�b1� and
4�b2� shows the case of reduced parameters �7� together with
Eq. �8�. From the weak standing-wave pattern in front of and
the dominantly TM2 pattern behind the bend, Fig. 4�b�, we
see that reflection and modal mixing are low so the device
works fine.

A possible implementation of the nonmagnetic bend with
reduced set of parameters is as a structure comprised of
many concentric annular layers with homogeneous and iso-

tropic permittivities. The continuous variation in �rr given by
Eq. �7� is first approximated by N annular layers with con-
stant �rr= ��ri�−2 and thickness d, ri being the inner radius of
the layer and i=1,2 , . . . ,N. To obtain the anisotropic permit-
tivity, each of the N layers is further divided into n layers
with homogeneous permittivities �k and thickness �kd, while
�k=1

n �k=1 ��k are the relative thicknesses�, as in Ref. 29. n is
usually taken to be 2, but we consider the case of n=3, as
well.

If the wavelength is large compared to d, each of N layers
can be considered to be an anisotropic medium with effective
dielectric permittivity29,30

1

�rr = �
k=1

n
�k

�k
, ��� = �

k=1

n

�k�k. �9�

First we consider the case n=2 and take that �1=�2=0.5.
From Eq. �7� we find �1 and �2 as

�1 = 1 − �1 − ��ri�−2, �2 = 1 + �1 − ��ri�−2. �10�

If 1− ��ri�−2 is to be positive within the bend �this corre-
sponds to passive/lossless dielectrics�, condition �8� cannot
be met. We have found that this is the main obstacle in real-
izing better bends with dielectric layers.

Figures 5�a1� and 5�a2� show the simulation results for
TM2 mode passing through a layered bend with n=2, where
�=1 /R1�R1=0.1m� and 40 layers �N=20� have been used.

FIG. 3. �Color online� �a� Domain D� from Fig. 2�a�, and �b� the
corresponding domain D. The rectangular subdomain D2� is trans-
formed to the annular segment shaped subdomain D2. The red ar-
rows show the wave propagation direction when a metamaterial
with parameters �6� is placed inside D2.

0 1 0 1-1

(a1)

(b2)(b1)

(a2)

FIG. 4. �Color online� FEM simulation results for the 2 GHz
TM2 mode excited at the left edge of the structures: �a� the wave-
guide bend with ideal and �b� with reduced set of the material
parameters. On the left side, �x1�, the real part of magnetic field
phasor is shown and on the right side, �x2�, the magnetic field
magnitude. The bend angle is 90°, R1=0.1m, R2=0.3m, and �
=1 /0.2m in both cases.
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Layer permittivities vary from 0.06 to 1.94. That the bending
effect works very well is seen from a negligible modal mix-
ing, as both the reflected and transmitted wave consist of
almost only TM2. However, compared to the case shown in
Figs. 4�b1� and 4�b2�, there is a significant reflection �indi-
cated by the pronounced standing wave in front of the bend�
and the transmitted power is reduced. As we previously dis-
cussed, this is due to the choice of �.

To improve on the implementation with n=2, we consider
the case of n=3, anticipating that it will allow us to achieve
spatially varying effective parameters �7� by varying �k while
keeping �k fixed. The realization with fixed permittivities is
clearly more favorable from a practical standpoint since it is
easier to control the thickness of layers than their permittiv-
ity.

Taking �k as fixed parameters, from Eq. �9� and �k�k=1,
we find �k as

��1

�2

�3
	 = � 1 1 1

�1 �2 �3

�1
−1 �2

−1 �3
−1 	

−1

� 1

1

��r�2 	 . �11�

The solution for �k for a given value of �r has to satisfy

�k 
 0, k = 1,2,3 �12�

because �k represent the relative thicknesses so they must be
positive. Equation �12� determines which values of � can be

obtained. An additional problem arises from the fact that �k
should also be positive. We have found that in case of nega-
tive �k effective-medium description �9� is ruined for propa-
gation parallel to the layers both due to the extinction of
waves in layers with negative permittivity and due to the
excitation of surface states on their interfaces.

It is straightforward to show that Eqs. �11� and �12�, and
�k
0 can be simultaneously met only if �r�1. With Eq.
�10� we have seen that Eq. �8� cannot be met in the case of
n=2, so now we see that it is not possible for n=3 either.
The same conclusion applies for any n.

Simulation results for the bend with N=20 and 60 layers
are shown in Figs. 5�b1� and 5�b2�. The value of � is chosen
to be 1/0.08 m. Layer permittivities used in simulation are
�1=0.8, �2=0.05, and �3=8. The reflection is still higher
than in Figs. 4�b1� and 4�b2�, but lower than in the case of
the n=2 bend. The improvement over the n=2 is probably
due to using more layers. The main advantage of the n=3
bend is, as noted before, in it being implemented using only
three different homogeneous and isotropic materials.

We have, so far, shown that this bend �the one discussed
in literature so far� can, for TM polarization, be implemented
using nonmagnetic materials so that modal mixing is negli-
gible, but with evident reflection depending on details of the
TM wave. In Sec. IV we will further improve on this by
considering a nonmagnetic transformation media �for a dif-
ferent bend� that will remove reflection completely.

B. Beam squeezer

Here we use ideas from Sec. II to design a device for
manipulating free-space electromagnetic beams. Figure 6
shows the underlying transformation for a beam squeezing
structure. The beam is compressed within the left trapezoidal
subdomain, then it passes through the long channel, and fi-
nally, it is expanded to the initial width within the right trap-
ezoidal subdomain. Vacuum is assumed as the exterior of the
device. Similar devices have independently been considered
in Refs. 20 and 31 except that stretching of the channel has
not been investigated there.

-1 0 1 0 1

(b1) (b2)

(a2)(a1)

FIG. 5. �Color online� FEM simulation results for the 2 GHz
TM2 mode excited at the left edge of structures. �a� The waveguide
bend with �=1 /0.1m, N=20 and 40 dielectric layers. Layer permit-
tivities are gradually changed according to Eq. �10�. �b� The wave-
guide bend with �=1 /0.08m, N=20 and 60 dielectric layers. Layer
permittivities are fixed ��1=0.8, �2=0.05, and �3=8� while their
thicknesses vary with r. �x1� show the real part of the magnetic field
phasor while �x2� are the magnetic field magnitudes.
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FIG. 6. �Color online� Transformation underlying the beam
squeezer. �a� Rectangular domain in Cartesian coordinates �a�,
and �b� the squeezed domain in curvilinear coordinates xi. The
parameters of transformation media are given by Eq. �14� for the
trapezoidal subdomains and by Eq. �16� for the middle subdomain.
The red arrows illustrate the beam propagation direction corre-
sponding to the simulation in Fig. 7.
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While the bend is a typical example of a CTM-based
structure used for obtaining a rotated outgoing wave, here
the main aim is to make a structure that complies with ex-
ternal requirements �width and length�, leaving the outgoing
wave unaffected. According to Fig. 6, two rectangles, the left
�L�, A�B�F�E�, and the right one �R�, C�D�H�G�, are gradu-
ally narrowed down from �AE�= �A�E��=w0 to �BF�=w and
connected by the rectangle between them �the channel�,
which has been narrowed down to w and stretched out from
�B�C��= l0 to �BC�= l. The side rectangles are transformed
using

x = x� + x�, y − Y0 = ���y� − Y0�, �� = a�x + b�, � = R,L .

�13�

The introduced parameters are defined with aL= �w
−w0�w0

−1s�−1, bL=1−aLxA, aR=−aL, bR=1−aRxD, xL=0, xR
= l− l0, s�= �A�B��= �C�D��=xB−xA=xD−xC, y=Y0 is the sym-
metry axis of trapezoidal subdomains �in this case Y0=0�,
while xP represents the x coordinate of the point denoted by
P. The material parameters for the left and the right trap-
ezoids are found as

��
ij = ��

ij = � ��
−1 a���

−2�y − Y0� 0

a���
−2�y − Y0� a�

2��
−3�y − Y0�2 + �� 0

0 0 ��
−1 	 .

�14�

The transformation of the rectangle B�C�G�F� to the rect-
angle BCGF is a simple rescaling

x = �x� − xB�� + xB, �y − Y0� = ��y� − Y0� , �15�

where = ll0
−1 and �=ww0

−1 are the stretching and compres-
sion parameters. The material parameters for the BCGF rect-
angle are

�ij = �ij = diag��−1,−1�,−1�−1� . �16�

The effect of geometrical transformations on electromag-
netic fields can be discussed on the example of the channel in
Fig. 7. Using Eqs. �15� and �3� the field intensities in the
channel are found to be

Ex = −1Ex�, Ey = �−1Ey�, Hz = Hz�, �17�

with Hz unaltered since the z axis is left invariant. This
shows that the compression �stretching� along the y direction
�x direction� is accompanied by increased �decreased� field
component intensity along that direction. The squeezing
structure focuses the fields concentrating all the power flow
to an arbitrarily small �not limited by diffraction� cross sec-
tion. It could be used for various sensor applications where a
strong signal improves the sensitivity or for imaging pur-
poses.

Figures 7�a1� and 7�a2� show the simulation of a Gauss-
ian TM beam �source denoted by S� with oblique incidence
passing through the squeezer with ideal material parameters.
To better illustrate how the fields propagate through the
structure, the compression and the stretching were set to
moderate values, �=0.15 and =39. The structure entrance
is twice as wide as the beam, ensuring that the beam does not

reach structure boundaries. In this way, the zero-field BC is
satisfied. Having passed through the narrow channel, the
beam leaves the squeezer translated �due to stretching of the
channel� along the x axis, retaining its initial propagation
direction and the field distribution. Since the structure is
theoretically perfect the slight reflection is only an artifact of
numerical simulation and can be decreased with higher mesh
density. However, it also indicates an increasing sensitivity
to material parameter deviations �here occurring due to nu-
merical discretization� with higher compression �small �� or
stretching �bigger �.

The reduced set of material parameters for the squeezer is
obtained by setting �red

zz =1 while changing the relevant com-
ponents of permittivity so that the dispersion relation re-
mains unaffected,27

�red
xx = �zz�xx, �red

xy = �zz�xy, �red
yy = �zz�yy . �18�

From our experience with the bend, we expect that reflection
may be significantly decreased by impedance matching to
vacuum along the central line of the device �y=Y0�. As in the
case of the bend, we find the impedance-matching condition
to be that the optical length equals the physical length, i.e.,
=1.

Simulation results for the squeezer with reduced material
parameters and =1 are given in Figs. 7�b1� and 7�b2�. As
can be seen, the device retains its function but with a visible
distortion of the transmitted beam. Also, appreciable reflec-
tion appears from the entrance and exit of the device, as

S S

SS

(a1) (a2)

(b1) (b2)

0 1-1 0 1

FIG. 7. �Color online� FEM simulation of the beam squeezer:
�a� ideal parameters ��=0.15 and =39� and �b� reduced parameters
��=0.15 and =1�. �x1� Real part of the magnetic field phasor, �x2�
magnetic field magnitude distribution. S is the source of the TM
beam. The color maps are saturated for better contrast.
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indicated by standing-wave patterns in front and within the
device in Fig. 7�b2�. To highlight the overall field distribu-
tion, color maps have been saturated �regions with pro-
nounced standing-wave peaks have been cut off�. In simu-
lated cases with �1 �not shown� we have found strong
reflection and obscured field pattern. Thus the proposed
squeezer can be realized with reduced parameters, but it is
crucial to have its impedance along the central line matched
to the exterior.

IV. DEVICES BASED ON NONMAGNETIC
TRANSFORMATION MEDIA

In Sec. III we have attempted to substitute the ideal �mag-
netic� transformation media parameters with a nonmagnetic
reduced set having the same dispersion ��k�. That approach
yielded good results but there was always the problem of
reflection due to impedance mismatch.

As in Sec. III a free-space background is assumed,
�0

−1�i�j�=�0
−1�i�j�=�i�j�. As long as the transformation leaves

the z direction invariant, z=z�, one of the optical axes of the
transformation media is parallel to it, and we have

�zz = �−1, �19�

which is the only relevant permeability component for TM
waves. Thus if

� = 1, �20�

a nonmagnetic transformation media for TM waves is ob-
tained. If we agree to evaluate the volume in xi coordinates
as if they were Cartesian �see note after Eq. �3� in Sec. II�,
condition �20� means that every subdomain of D� is mapped
to a subdomain of D with the same volume.

So far, this idea received little attention in the literature.
Chen and Chan consider layered dielectric structures that act
as nonmagnetic transformation media in Ref. 32. In Ref. 33,
Luo et al. described a cylindrical cloak with spatially invari-
ant permeability �zz, which is based on a similar idea, except
that �=const
1 because the cloaking transformation de-
creases the volume of a domain by creating a hole in it.

We now show that the waveguide bend and beam
squeezer can be designed with a transformation that satisfies
Eq. �20� and thus conceptually solve the problem of bending
and squeezing TM beams using nonmagnetic structures.

A. Nonmagnetic waveguide bend

The TM beam shifter described in Ref. 23 is nonmagnetic
and Eq. �20� is satisfied. The shifter does not change a field
propagation direction, it only translates the field. A change in
a field propagation direction can be achieved by a shift of the
polar angle in cylindrical coordinates. This is shown in Fig. 8
where the annular ring segment D2� in Fig. 8�a� is trans-
formed to the subdomain D2 of the bent waveguide in Fig.
8�b�. The transformation reads

r = r�, � = �� + �0
f�r�� − f�R1�
f�R2� − f�R1�

, z = z�, �21�

where �0 is the bend angle, f�r�� an arbitrary continuous
function of r�, and R1 and R2 are the inner and outer radius of

D2�. The relative permittivity tensor �	
� in cylindrical coordi-

nates �� ,	=r ,� ,z� is given by

��	 = � 1 mr 0

mr 1 + mr2 0

0 0 1
	, m =

�0

f�R2� − f�R1�
� f�r��

�r�
.

�22�

Transformation �21� is the same as the one used in Ref. 18
for the field rotator. The bend is obtained by cutting out a
segment from the field rotator. This device can be imple-
mented using curved isotropic and homogeneous dielectric
layers when f�r��=ln�r��.32 It is shown in Fig. 8�c� where
alternating dielectric layers with permittivities �1=0.037 and
�2=27.33 are assumed.

Figure 9�a� shows the simulation results for the nonmag-
netic waveguide bend with PEC boundaries. The 1.66 GHz
TM2 wave is excited on the left edge. The structure is theo-
retically ideal so the weak reflection is a numerical error that
can be decreased by increasing the mesh density or by in-
creasing the ratio R2 /R1 so that the bending is less abrupt.
Figure 9�b� shows the simulation for a bend realized using
13 dielectric layers. There is a slightly higher reflection than
in Fig. 9�a�. The bend in Fig. 9�c� is realized with 26 layers
giving practically the same results as the ideal structure from
Fig. 9�a�.

These results demonstrate that a reflectionless and non-
magnetic waveguide bend for TM waves can be fabricated
using only isotropic and homogeneous dielectric layers.
Compared to the bend with reduced parameters analyzed in
Sec. III, the nonmagnetic bend clearly shows a superior per-
formance that comes at the expense of a more complicated
geometry.

B. Nonmagnetic beam squeezer

Figures 10�a� and 10�b� show the transformation used for
the nonmagnetic beam squeezer. The shaded rectangles in
Fig. 10�a� and corresponding shaded subdomains in Fig.

(a)

(b) (c)

D1 D1

D3
D3

D2
D2

D’1 D’3D’2

R1

R1

R2

R2

FIG. 8. �a� Straight waveguide structure is transformed to �b� a
bent waveguide. Transformation of D2� to D2 is given by Eq. �21�.
�c� Curved layers within D2 for implementation using dielectric
layers.
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10�b� having the same area illustrate the point that �=1. For
rectangles A�B�F�E� �L� and C�D�H�G� �R� the transforma-
tion is given by

x =
1

a�

ln
x� +
b�

a�

 + c�, y = �a�x� + b�y�, � = R,L

�23�

with parameters aR=−aL= �1−�� /s�, s�= �A�B��, �
= �BF� / �B�F�, bL=1−aLxA�

� , bR=1−aRxD�
� , l= �BC�, and

cL = xA�
� −

1

aL
ln� s�

1 − �
�, cR = cL + l −

2s�

1 − �
ln� �s�

1 − �
� .

�24�

The relative permittivity tensor of transformation media
within ABEF and CDHG reads

��
ij = � f−2 a�yf−2 0

a�yf−2 a�
2y2f−2 + f2 0

0 0 1
	 �25�

with f�= �a��exp�a��x−c���.

The transformation of the rectangle B�C�G�F� to the rect-
angle BCGF is determined by the condition that the com-
pression � is reciprocal to the stretching = �BC� / �B�C��,

x = �−1x� +
ln �

aL
−

�1 − ��xA� + s�

�
, y = �y�, �26�

so the parameters of media in the rectangle BCGF are

�ij = diag��−2,�2,1� . �27�

The simulation of a TM Gaussian beam passing through
the squeezer in Figs. 10�c1� and 10�c2� confirms the perfect
performance of the proposed device.

This completes the demonstration of nonmagnetic realiza-
tion of the two principal examples in manipulating confined
TM fields. The approach we have taken in this section is
clearly better than the one with reduced material parameters
that is widely used for the design of nonmagnetic CTM-
based devices. It might not be apparent immediately, but the
condition �=1 is quite lax and is equivalent to fixing the
phase of the transformed field, which we had to do even in
the case of reduced material parameters to minimize reflec-
tion �recall fixing � for the bend and  for the squeezer�.

In summary, the application of CTM to spatially confined
electromagnetic fields was considered. It was used to give
various solutions for the waveguide bend and beam squeezer.
Both approximate and exact nonmagnetic realizations were
found. In the case of structures with a reduced set of material

(a1) (a2)

(b1) (b2)

(c1) (c2)

0 1-1 0 1

FIG. 9. �Color online� FEM simulation results for nonmagnetic
waveguide bend: �a� ideal bend, �b� bend with 13 dielectric layers,
and �c� bend with 26 dielectric layers. Layer permittivities are con-
stant, �1=0.037 and �2=27.33. �x1� show the real part of the mag-
netic field phasor, while �x2� are the field magnitude distributions.

c c

FIG. 10. �Color online� �a� Rectangular domain in xi� trans-
formed to �b� the domain in xi by transformation given in Eqs. �23�
and �26�. Few subdomains in �a� and �b� are shaded to emphasize
that their areas are equal since �=1. Simulation of a 7.5 GHz TM
Gaussian beam excited at S: �c1� Real part of the magnetic field
phasor distribution, �c2� magnetic field amplitude distribution.
Simulation parameters: �=0.125, s�=0.06 m, �BF�=0.1 m, and l
=0.32 m.
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parameters, the influence of impedance mismatch and its de-
pendence on free parameters were investigated. Transforma-
tions with unit Jacobian determinant were recognized as
promising for the design of nonmagnetic devices and used to
find novel nonmagnetic solutions for the bend and squeezer.
Several implementations using isotropic and homogeneous
layered systems were considered. On the example of the
bend with reduced parameters, it was shown that the inho-
mogeneity of effective permittivity tensor can be success-
fully controlled by varying only the layer thicknesses. The
implementation of the nonmagnetic bend with such layers
was shown to be practically perfect. Its application is in op-
tical waveguides that allow TM polarized waves. The non-

magnetic squeezer is interesting for focusing and imaging
applications since it is not limited by diffraction.
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